

香港中文大學 The Chinese University of Hong Kong

Institute of Theoretical Computer Science and Communications

ITCSC Colloquium

Stability vs. Cost of Matchings

By

Prof. Roger Wattenhofer

Professor, Information Technology and Electrical Engineering Department, ETH Zurich, Switzerland

4 January 2012, Wednesday

3:30 pm – 4:30 pm

Rm. 121, 1/F., Ho Sin Hang Engineering Building, CUHK

Abstract:

My talk connects two classic approaches regarding graph matchings. In his seminal 1965 paper, Jack Edmonds presented an algorithm that finds a maximum matching in a graph in polynomial time. Building upon his work, Lovasz and Plummer developed an efficient combinatorial algorithm for the weighted case, which can also be used to compute a minimum-cost perfect matching in complete graphs. In another seminal paper published a few years earlier in 1962, David Gale and Lloyd Shapley introduced the notion of a stable matching, and presented a polynomial time algorithm that computes one in a bipartite setting. Whereas Edmonds, and Lovasz and Plummer give a globally optimal solution for the matching problem, Gale and Shapley essentially compute a locally optimal solution, as no pair of nodes is unstable in the sense that they rather be matched to each other than their current partners. In my talk I will discuss whether there is a trade-off between the global and the local optimization problem. This is joint work with Yuval Emek and Tobias Langner.

Biography:

Roger Wattenhofer's research interests are a variety of algorithmic and systems aspects in computer science and information technology, currently in particular wireless networks, multi-core systems, peer-to-peer computing, and social networking. He publishes in different communities: distributed computing (e.g., PODC, SPAA, DISC), networking (e.g., MobiCom, MobiHoc, SenSys, IPSN, HotNets), or theory (e.g., STOC, FOCS, SODA, ICALP).

*** ALL ARE WELCOME ***

Hosted & Enquiries : Institute of Theoretical Computer Science and Communications Tel: 3943 1257