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Paths in a Heterogenous Environment

 

Winter School, CUHK, 2010 Approximate Path Problems



Paths in a Current

α

θ
β

c

1

speed =
√

1 + c2 − 2c cosα

=
√

1 + c2 + 2c cos(β + θ)

=
√

1 + c2 + 2c cos(arcsin(c sin θ) + θ).
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Paths in a Current

 

Unit disk
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Paths on a Terrain

ϕ

`

θ
φ

φ

` = distance traveled,

µ = friction coefficient,

Energy = `(µ cosφ+ sinϕ)

= `(µ cosφ+ sin θ sinφ).
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Paths in a Current

 

Unit halfdisk: φ = π/6, µ = 0.2.
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Convex Distance Function

x

B

y

dB(x, y) = inf{λ : y ∈ λB + x}

Non-negative, triangle inequality, possibly assymetric.

Assume that B is sandwiched between concentric disks of radii 1 and 1/ρ.
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Input

A planar subdivision T possibly with some regions as
obstacles.

Assume triangular faces. Each face f is associated with a
distance function df induced by a convex shape Bf .

Given a path P in T , we have

length(P ) ≤ cost(P ) ≤ ρ length(P ).
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Previous Work

Weighted Region:

Aleksandrov et al. [STOC00, JACM05]: dependent on the
minimum angle in T .

Sun and Reif [Trans. Rob.05, Algo.06]: dependent on the
minimum angle in T .

Mitchell and Papdimitriou [JACM91]
O(n8L) time: n is the number of vertices in T , L is the
number of bits in the input, which includes a term log(1/ε).
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Our results

Approx. shortest path in O(ρ
2 log ρ
ε2

n3 log ρn
ε ) time.

[SICOMP08]

Querying approx. shortest path [SICOMP10]:

query time = O(log ρn
ε ).

space = O(ρ
2n4

ε2 log ρn
ε ).

Approx. shortest homotopic path in O(ρ
5h5

ε k2n3 log4 ρknε )
time.
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Infiniteness of the Optimal

 

Existence of the shortest path can be proved using length spaces.
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Theme of Previous Work

θ

`

wmin

wmax
ε` sin θ

Cost of link within the face ≥ wmin` sin θ.

Cost of one snap ≤ wminε` sin θ.

Each snapping gives a relative error ε.

Overall relative error ε.
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An Easy Lemma

Fix source vs and destination vd. Let n be the number of vertices
in T .
Focus on paths at most k ≥ 2n− 4 links. Define path P εk with at
most k links such that
cost(P εk) ≤

(
1 + ε

3

)
·min cost of paths with at most k links.

Lemma

cost(P εk) ≤
4ρ
3 geo(vs, vd).

Proof. Let Q with a T -respecting path with length geo(vs, vd) with
the minimum number of nodes. Q has at most 2n− 4 links. Thus,

cost(P εk) ≤
(
1 +

ε

3

)
cost(Q) ≤ 4

3
cost(Q) ≤ 4ρ

3
geo(vs, vd).
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A Simple Algorithm

1 Define the ball B0 centered at vs with radius 4ρ
3 geo(vs, vd).

So P εk ⊂ B0.

2 For each edge e of T , place a maximal set of Steiner points
on e ∩B0 with spacing ε

6ρkgeo(vs, vd).
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A Simple Algorithm

1 Define the ball B0 centered at vs with radius 4ρ
3 geo(vs, vd).

So P εk ⊂ B0.

2 For each edge e of T , place a maximal set of Steiner points
on e ∩B0 with spacing ε

6ρkgeo(vs, vd).

3 Define a Steiner graph G:

Make a directed edge (p, q) for any Steiner points or vertices p
and q of T that border the same face.

Define the weight of (p, q) as cost(pq).

4 Find the shortest path in G.

Lemma

For any k ≥ 2n− 4, we can approximate any path with at most k
links in O(nk2ρ4/ε2) time.
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Further Improvements

Use balls Bi of radii 4ρ
2i3

geo(vs, vd) for 0 ≤ i ≤ log ρ. Let
Blog ρ+1 be ∅.

For each edge e of T , discretize e ∩ (Bi \Bi+1) using spacing
ε

2i+16k
geo(vs, vd).

Use Sun and Reif’s BUSHWHACK algorithm to avoid
generating the edges of G.

Lemma

For any k ≥ 2n− 4, we can approximate any path with at most k
links in O(nkρ log ρε log kρ

ε ) time.
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Path Complexity and Main Result

Lemma

For any ε ∈ (0, 1), there is a (1 + ε)-approx. shortest polygonal
path P with at most 21ρn2/ε links.

Theorem

We can find an (1 + ε)-approx. shortest path in

O(ρ
2 log ρ
ε2

n3 log ρn
ε ) time.
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Approx. Shortest Homotopic Path

Originate from VLSI research.

Some planning system works by optimizing paths sketched by
users.

We need to require the convex distance functions to be
symmetric.
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Encoding the Homotopy
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Encoding the Homotopy

 

Pick one vertex of each obstacle as an anchor.

Compute an anchor tree: some approx. shortest path tree
from the highest point in T to all anchors.
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Encoding the Homotopy

 

Crossing sequence of the solid path:
−→a1−→a2−→a3−→a4−→a5←−a5←−a4←−a3−→a3←−a3−→a3−→a4−→a5.

It can be reduced to the canonical crossing sequence
−→a1−→a2−→a3−→a4−→a5 of the dashed path.
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Encoding the Homotopy

 

Lemma

Two paths from s to t are homotopic if and only if their canonical
crossing sequences are identical.
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Encoding the Homotopy

 

Lemma

For any ancestor-descendent points x and y in the anchor tree, the
tree path cost between x and y is at most the shortest path cost
between x and y plus O(ε2).
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High Level Strategy

 

Winter School, CUHK, 2010 Approximate Path Problems



High Level Strategy

1 Compute the canonical crossing sequence C of the input path.

2 Take some discretization D of the overlay of T and the
anchor tree. Treat the anchor tree as an obstacle.

3 Compute shortest paths in D from s to all vertices of D.

4 Let −→ai be the first symbol in C. Let γi be the path in the
anchor tree from ai to the root. Copy the costs of reaching
the vertices on left of γi to the right of γi.

5 Use the vertices of γi as multiple weighted sources and find
shortest path to all vertices of D again.

6 Repeat last two steps until all symbols in C are processed.
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High Level Strategy

Lemma

The canonical crossing sequence has O(ρh2k log ρkn
ε ) symbols,

where h is the number of obstacles.

Lemma

For any ε ∈ (0, 1), there is a (1 + ε)-approx. shortest polygonal
path with O(ρn2 log ρn

ε ) links.

Theorem

For any ε ∈ (0, 1), we can find a (1 + ε)-approx. shortest

homotopic path in O(ρ
5h5

ε k2n3 log4 ρknε ) time.

Winter School, CUHK, 2010 Approximate Path Problems



High Level Strategy

Lemma

The canonical crossing sequence has O(ρh2k log ρkn
ε ) symbols,

where h is the number of obstacles.

Lemma

For any ε ∈ (0, 1), there is a (1 + ε)-approx. shortest polygonal
path with O(ρn2 log ρn

ε ) links.

Theorem

For any ε ∈ (0, 1), we can find a (1 + ε)-approx. shortest

homotopic path in O(ρ
5h5

ε k2n3 log4 ρknε ) time.

Winter School, CUHK, 2010 Approximate Path Problems



High Level Strategy

Lemma

The canonical crossing sequence has O(ρh2k log ρkn
ε ) symbols,

where h is the number of obstacles.

Lemma

For any ε ∈ (0, 1), there is a (1 + ε)-approx. shortest polygonal
path with O(ρn2 log ρn

ε ) links.

Theorem

For any ε ∈ (0, 1), we can find a (1 + ε)-approx. shortest

homotopic path in O(ρ
5h5

ε k2n3 log4 ρknε ) time.

Winter School, CUHK, 2010 Approximate Path Problems



Summary

Approx. shortest path in O(ρ
2 log ρ
ε2

n3 log ρn
ε ) time.

[SICOMP08]

Querying approx. shortest path [SICOMP10]:

query time = O(log ρn
ε ).

space = O(ρ
2n4

ε2 log ρn
ε ).

Approx. shortest homotopic path in O(ρ
5h5

ε k2n3 log4 ρknε )
time.
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Future Research

Reduce the running time of the approx. shortest homotopic
path computation.

Improve the path complexity further.

Extend the cost model. For example, allow forbidden travel
directions on a terrain.
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